ETUDE DE LA TRANSITION DE PHASE DU COMPOSE Sb.405Te.595 ENTRE 630 K ET 665 K

Y. Feutelais, N. B. Chanh*, B. Legendre et J. R. Didry

LABORATOIRE DE CHIMIE MINÉRALE II. FACULTÉ DE PHARMACIE, 5 RUE J. B. CLÉMENT 92296 CHÂTENAY-MALABRY CEDEX, FRANCE *LABORATOIRE DE CRISTALLOGRAPHIE ET DE PHYSIQUE CRISTALLINE, U. A. 144 C.N.R.S. — UNIVERSITÉ DE BORDEAUX I, FACULTÉ DES SCIENCES, 351 COURS DE LA LIBÉRATION 33405 TALENCE CEDEX, FRANCE

(Reçu le 5 décembre 1988)

The present study was performed in an attempt to confirm the existence of the $Sb_{.405}$ Te_{.595} phase transition by employing drop calorimetric method and high temperature X-ray diffractometry. Heat capacity of $Sb_{.405}$ Te_{.595}, in the solid state is deduced. Low and high temperature X-ray powder data are given.

La détermination du domaine d'existence de la phase « δ » du système antimoinetellure, a fait l'objet de différentes études [1, 2]

Dans une récente publication [3], nous avons montré que cette phase « δ », souvent dénommée Sb₂Te₃ n'est pas stoechiométrique et nous en avons proposé la formulation suivante : Sb₄₀₅Te_{.595}. L'étude du comportement thermique (analyse enthalpimétrique et dilatométrique) entre la température ambiante et 922 K nous a également amené à conclure à l'existence d'un domaine de transition situé entre 630 K et 665 K ; la fusion de ce composé intervient à 889,35 K de façon congruente.

Dans le but de confirmer la présence de cette transition de phase, nous avons effectué, au voisinage de 650 K, d'une part des mesures complémentaires d'enthalpimétrie et une analyse radiocristallographique en température d'autre part.

Méthodes expérimentales

a) Enthalpimétrie de chute

La technique d'enthalpimétrie de chute, la méthode utilisée ainsi que le système d'acquisition et d'exploitation statistique des résultats expérimentaux ont été précédemment décrits [3-5].

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest Le domaine de transition étudié (630 K-665 K) a fait l'objet de 10 mesures complémentaires par rapport à notre travail antérieur ; nous disposons donc, dans cet intervalle de température d'un total de 15 mesures, soit une valeur tous les 2,3 K en moyenne.

Pour chaque mesure, nous avons effectué :

- 8 chutes d'alliage

— 2 ou 3 chutes d'alumine [6] pour étalonnage.

b) Analyse radiocristallographique en température

L'appareil utilisé est une chambre Guinier-Simon ; la radiation $K_{\alpha 1}$ du cuivre (lambda = 1,54056 Å) est isolée au moyen d'un monochromateur de quartz de type Johannson.

L'échantillon finement broyé est scellé sous vide dans un tube capillaire de quartz.

La vitesse de déplacement du film est de 1 mm/heure et la vitesse de montée en température employée de 25 deg/heure.

Résultats

Par rapport à notre précédent travail [3], où nous disposions, à l'état solide, de 58 valeurs d'enthalpie, nous avons effectué 13 mesures supplémentaires se répartissant comme suit :

— 3 mesures supplémentaires dans l'intervalle 298 K-629 K

- 10 valeurs de plus dans le domaine de transition 630 K-665 K.

Les variations d'enthalpie, à l'état solide, en fonction de la température $\Delta H^{T_{298}} = f(T)$ portent, au total, sur 71 valeurs s'échelonnant entre 298,15 K et 883,55 K. Les résultats sont présentés dans le tableau 1.

L'affinement par ajustement polynômial de ces valeurs nous a amené à redéfinir les trois intervalles de température précédemment établis :

De 298,15 K à 571,15 K

La variation d'enthalpie croît linéairement en fonction de la température : $\Delta H^{T_{298}} = 3970,470 + 24,929 (T - 458,23)$ soit :

$$\Delta H^{T_{298}} = -7452,58 + 24,929 T \tag{1}$$

d'où nous déduisons la valeur de la capacité calorifique :

$$C_p = 24,93 \text{ J K}^{-1} \text{ mol}^{-1}$$

 $\sigma_1 = 70,3 \text{ (15 d.d.l.)}$

J. Thermal Anal. 35, 1989

2424

N°	Temp., K	H, obs., Joules	H, calc., Joules	C_p , J/K·mol
1	298,15	0	-20	24,93
2	372,15	1842	1825	24,93
3	396,15	2329	2423	24,93
4	406,40	2725	2679	24,93
5	418,40	2887	2978	24,93
6	419,05	2951	2994	24,93
7	421,15	3073	3046	24,93
8	432,15	3422	3320	24,93
9	446,55	3653	3679	24,93
10	467,85	4119	4210	24,93
11	493,15	4950	4841	24,93
12	503,15	5127	5090	24,93
13	515,15	5462	5389	24,93
14	532,45	5839	5821	24,93
15	542,65	6107	6075	24,93
16	554,15	6253	6362	24,93
17	571,15	6759	6786	24,93
18	579,95	6969	6945	27,07
19	586,65	7111	7127	27,07
20	593,15	7273	7303	27,07
21	598,85	7506	7457	27,07
22	608,85	7758	7728	27,07
23	615,65	7977	7912	27,07
24	618,55	7935	7990	27,07
25	621,15	8009	8061	27,07
26	623,15	8050	8115	27,07
27	624,15	8105	8142	27,07
28	625,15	8125	8169	27,07
29	627,65	8219	8237	27,07
30	629,15	8313	8277	27,07
31	630,15	8338	8304	27,07
32	633,65	8494	8399	27,07
33	637,15	8467	8494	27,07
34	638,65	8588	8534	27,07
35	641,45	8581	8610	27,07
36	643,55	8652	8667	27,07
37	643,85	8702	8675	27,07
38	645,65	8692	8724	27,07
39	649,15	8858	8818	27,07
40	649,95	8811	8840	27,07
41	652,85	8925	8919	27,07
42	655,35	8932	8986	27,07
43	658,95	9012	9084	27,07
44	661,15	9215	9143	27,07
45	665,15	9293	9252	27,07

Tableau 1 Valeurs expérimentales et lissées des variations d'enthalpie en fonction de la température

J. Thermal Anal. 35, 1989

N°	Temp., K	H, obs., Joules	H, calc. Joules	C_p , J/K·mol
46	667,75	9517	9447	26.47
47	668,15	9433	9458	26.48
48	672,15	9645	9564	26.55
49	674,15	9658	9617	26.58
50	675,65	9524	9657	26.61
51	677,15	9704	9697	26.63
52	679,89	9843	9769	26.68
53	705,35	10414	10455	27.11
54	712,15	10543	10639	27.23
55	715,15	10722	10721	27.28
56	731,15	11130	11160	27.55
57	739,45	11371	11389	27.69
58	743,35	11528	11497	27.76
59	753,45	11728	11778	27.93
60	758,85	11861	11929	28.02
61	779,15	12592	12502	28.37
62	779,35	12421	12507	28.37
63	792,45	12983	12881	28,59
64	804,85	13188	13236	28,80
65	811,35	13509	13424	28,91
66	825,85	13845	13845	29,16
67	834,15	14209	14088	29,30
68	840,95	14294	14287	29,41
69	860,15	14809	14855	29,74
70	873,15	15229	15243	29,96
71	883,55	15501	15556	30,14

Tableau 1 (cont.)

avec

$$\sigma^2 = \frac{\Sigma (\Delta h_m - \Delta h_c)^2}{(N-n)}$$

où Δh_m = variation d'enthalpie entre 298,15 K et T mesurée

 Δh_c = variation d'enthalpie calculée

N = nombre de mesures effectuées

n = nombre de paramètres ajustés

N-n = nombre de degré de liberté (d.d.l.)

De 579,95 K à 665,15 K, domaine de transition

Nous avons observé une variation linéaire de $\Delta H^{T_{298}} = f(T)$

$$\Delta H^{T_{298}} = 8318,216 + 27,067 \ (T - 630,67)$$

J. Thermal Anal. 35, 1989

soit

ďoù

$$\Delta H^{T_{298}} = -8751,873 + 27,067 T$$

$$C_{p} = 27,07 \text{ J K}^{-1} \text{ mol}^{-1}$$

$$\sigma_{2} = 47,2 (26 \text{ d.d.l.})$$
(2)

De 667,75 K à 883,55 K

La fonction $\Delta H^{T_{298}} = f(T)$ est assimilable à un polynôme de degré 2:

$$\Delta H^{T_{298}} = 11852,58 + 27,974 \ (T - 756,104) + 8,486 \cdot 10^{-3} \ (T - 756,104)^2$$

soit

$$\Delta H^{T_{298}} = -4447,28 + 15,1414 T + 8,486 \cdot 10^{-3} T^{2}$$
(3)
d'où $C_{p} = 15,1414 + 16,972 \cdot 10^{-3} T$
 $\sigma_{3} = 70,1 (23 \text{ d.d.l.})$

Le graphe de la fonction $\Delta H^{T_{298}} = f(T)$, aux environs du domaine de transition, est reporté sur la figure 1.

L'examen de cette courbe peut laisser supposer l'existence de discontinuités à la frontière de chacun des domaines ; les différences observées dans chacun des cas ont fait l'objet d'une interprétation statistique pour en apprécier la significativité.

Différence observée à la frontière entre le premier et le deuxième domaine (T = 571, 15 K).

Fig. 1 Courbe representative de la fonction $\Delta H^{T_{298}} = f(T)$

J. Thermal Anal. 35, 1989

A cette température, la valeur de l'enthalpie calculée avec l'équation (1) est de 6786 Joules et de 6707 Joules à l'aide de l'équation (2), soit une différence de 79 Joules.

L'écart type relevé sur la différence entre les deux mesures est de $\sigma = (\sigma_1^2 + \sigma_2^2)^{1/2}$

$$\sigma = 84,7$$
 Joules

La différence de 79 Joules est inférieure à 2σ (169,4 Joules), donc cette différence est non significative.

Différence observée entre le deuxième et le troisième domaine (T = 665, 15 K). Les enthalpies calculées sont :

9252 Joules avec l'équation 2

9378 Joules avec l'équation 3

soit une différence de 126 Joules.

L'écart type calculé sur cette différence est $\sigma = (\sigma_2^2 + \sigma_3^2)^{1/2}$ soit 84,5 Joules.

La différence de 126 Joules, toujours inférieure à 2σ (169 Joules) est donc non significative.

Nous pouvons donc conclure que la fonction $\Delta H^{T_{298}} = f(T)$ est continue dans l'intervalle de température considéré.

La figure 2 représente la courbe $C_p = f(T)$ entre 298,15 K et 883,55 K.

L'existence du domaine de transition de phase trouve une confirmation dans l'analyse des résultats radiocristallographiques menés en température croissante entre 298 K et 723 K.

Fig. 2 Courbe représentative de la fonction $C_p = f(T)$

soit

Fig. 3 Cliché de diffraction-X du composé Sb.405 Te.595 entre 298 K et 723 K. Appareil : Chambre de Guinier Simon. Longueur d'onde : Cuivre (Ka.). Monochromateur : Quartz. Puissance utilisée : 40 kV – 30 mA. Domaine de température balayé en 17 H 7' : 20 °C-450 °C (en montée). Vitesse du déplacement du film : 1 mm/heure. Fente de sortie : 1 mm. Echantillon : Poudre scellée dans un tube de verre Pyrex à paroi mince et de diamètre 0,5 mm

Tableau 2 Diagramme de poudre de Sb,405 Te,595 à la température ambiante

$d_{\rm obs.},{ m \AA}$	Int.	d _{astm}	$(I/I_0)_{ASTM}$	h/k/l
3,18	F	3,157	100	0/1/5
2,36	F	2,349	35	1/0/10
2,14	mf	2,130	25	1/1/0
2,03	m	2,030	4	0/0/15
1,985	f	1,977	4	1/0/13
1,850	f	1,875	4	0/1/14
1,775	m	1,766	10	2/0/5
1,695	m	1,692	2	0/0/18
1,585	m	1,578	8	0/2/10
1,472	m	1,470	8	1/0/19
1,454	f	1,450	2	0/0/21
1,408	m	1,408	2	0/1/20
1,362	m	1,360	8	1/2/5
1,328	m	1,325	2	1/1/18

F =forte, m =moyen, f =faible, tf =très faible.

Le cliché de diffraction obtenu est présenté sur la figure 3. Une modification du diagramme intervient aux environs de 550 K.

Le tableau 2 donne, pour la phase basse température, le diagramme de poudre indexé ainsi que celui relevé sur le fichier A.S.T.M.

Le diagramme de la phase haute température est présenté sur le tableau 3.

Tableau 3 Diagramme de poudre de

Sb _{,40} tempe	5Te _{,595} phase erature	haute
d _{obs.} , Å	Int.	
3,23	F	
3,22		
2,81	tf	
2,35	F	
2,25	m	
2,11	f	
2,07	tf	
1,90	f	
1,89	f	
1,86	m	
1,79	f	
1,69	f	
1,63	f	
1,62	tf	

F =forte, m =moyen, f =faible, tf = très faible.

Discussion

Nos précédents travaux nous ont amenés à conclure, d'après les résultats de calorimétrie de chute et de dilatométrie, à la présence d'une transition de phase à l'état solide, pour laquelle nous avons supposé un second ordre au sens d'Erhenfest.

La présence de cette transition est effectivement confirmée par l'évolution du diagramme de diffraction-X en température; la continuité de la courbe $\Delta H^{T_2^{98}} = f(T)$ révèle que la transition s'effectue sans chaleur latente et confirme donc un ordre supérieur à 1.

Les résultats de l'étude cristallographique menée par Semiletov [7] doivent donc être attribués à la phase basse température.

Bibliographie

- N. K. Abrikosov, L. V. Poretskaya et I. P. Ivanova, Zh. Neorg. Khim., 4 (1959), 2525-2530; Russ. J. Inorg. Chem., 4 (1959) 1163.
- 2 L. V. Poretskaya, N. K. Abrikosov et V. M. Glasov, Zh. Neorg. Khim., 8 (1963) 620.
- 3 B. Legendre, Y. Feutelais et J. R. Didry, J. Thermal Anal., 34 (1988) 345.
- 4 T. Kang et R. Castanet, J. Less. Common Metal., 51 (1977) 125.

- 5 G. Morgant, J. R. Didry, B. Legendre et C. Souleau, J. Thermal Anal., 22 (1981) 119.
- 6 Synthetic sapphire, Certificate of Standard Reference Materials, 720 (1970), U.S. Depart-

ment of Commerce, National Bureau of Standards, Washington, D.C.

7 Semiletov, Kristallografiya, 1 (1956) 403.

Zusammenfassung — Diese Arbeit beschäftigt sich mit dem Nachweis der Existenz der Sb_{.405}Te_{.595} Phasenumwandlung mittels Dropkalorimetertechnik und Hochtemperaturröntgendiffraktometrie. Es wird die Wärmekapazität von Sb_{.405}Te_{.595} im festen Zustand abgeleitet sowie Daten von Nieder- und Hochtemperaturröntgenpulveraufnahmen gegeben.

Резюме — Методом капельной калориметрии и высокотемпературной рентгенодифрактометрии сделаны попытки подтвердить наличие фазового перехода для Sb_{0,405}Te_{0,595}. Выведена теплоемкость для этого соединения в твердом состоянии. Приведены данные низко- и высокотемпературных порошковых рентгенографических измерений.